Homogeneous continua for which the set function T is continuous
Autor: | Sergio Macías |
---|---|
Rok vydání: | 2006 |
Předmět: |
Class (set theory)
Pure mathematics Indecomposable continuum Decomposable continuum ε-homeomorphism Circle of pseudo-arcs Homogeneous continuum Continuum Upper semicontinuous decomposition TXZ-continuous map Aposyndetic continuum Pseudo-arc Mathematics Discrete mathematics Conjecture Continuum (topology) Hyperspace Hausdorff metric Set function T Terminal subcontinuum Property of Effros Homogeneous Set function Continuous decomposition Geometry and Topology |
Zdroj: | Topology and its Applications. 153:3397-3401 |
ISSN: | 0166-8641 |
Popis: | We answer in the negative the conjecture of Sam B. Nadler Jr and David P. Bellamy which says “Let X be a homogeneous one-dimensional continuum. Then T is continuous for X”. We characterize the class of homogeneous continua for which T is continuous. |
Databáze: | OpenAIRE |
Externí odkaz: |