Existence and boundary behavior of positive solutions for a Sturm-Liouville problem

Autor: Samia Zermani, Syrine Masmoudi
Rok vydání: 2016
Předmět:
Zdroj: Opuscula Mathematica, Vol 36, Iss 5, Pp 613-629 (2016)
ISSN: 1232-9274
DOI: 10.7494/opmath.2016.36.5.613
Popis: In this paper, we discuss existence, uniqueness and boundary behavior of a positive solution to the following nonlinear Sturm-Liouville problem \[\begin{aligned}&\frac{1}{A}(Au^{\prime })^{\prime }+a(t)u^{\sigma}=0\;\;\text{in}\;(0,1),\\ &\lim\limits_{t\to 0}Au^{\prime}(t)=0,\quad u(1)=0,\end{aligned}\] where \(\sigma \lt 1\), \(A\) is a positive differentiable function on \((0,1)\) and \(a\) is a positive measurable function in \((0,1)\) satisfying some appropriate assumptions related to the Karamata class. Our main result is obtained by means of fixed point methods combined with Karamata regular variation theory.
Databáze: OpenAIRE