A Porphyrin Spin Qubit and Its 2D Framework Nanosheets

Autor: Miguel A. Andrés, Ainhoa Urtizberea, Eva Natividad, Michel Goldmann, Olivier Roubeau, Ignacio Gascón, Pablo J. Alonso
Přispěvatelé: Instituto de Ciencia de Materiales de Aragón [Saragoza, España] (ICMA-CSIC), University of Zaragoza - Universidad de Zaragoza [Zaragoza], Computing Science Department (CS), Radboud university [Nijmegen], Instituto de Nanociencia de Aragón [Saragoza, España] (INA), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de recherches Paul Pascal (CRPP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Gobierno de Aragón, Department of Energy (US), Diputación General de Aragón, Ministerio de Educación (España)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Advanced Functional Materials
Advanced Functional Materials, Wiley, 2018, 28 (31), pp.1801695
Digital.CSIC. Repositorio Institucional del CSIC
instname
ISSN: 1616-301X
1616-3028
Popis: Molecular spin qubits have been shown to reach sufficiently long quantum coherence times to envision their use as hardware in quantum processors. These will however require their implementation in hybrid solid‐state devices for which the controlled localization and homogeneous orientation of the molecular qubits will be necessary. An alternative to isolated molecules that can ensure these key aspects is 2D framework in which the qubit would act as node. In this work, it is demonstrated that the isolated metalloporphyrin [Cu(H4TCPP)] molecule is a potential spin qubit, and maintains similar quantum coherence as node in a 2D [{CuTCPP}Zn2(H2O)2] metal–organic framework. Mono‐ and multilayer deposits of nanosheets of a similar 2D framework are then successfully formed following a modular method based on Langmuir–Schaefer conditions. The orientation of the {CuTCPP} qubit nodes in these nanosheets is homogeneous parallel to the substrate. These nanosheets are also formed with a control over the qubit concentration, i.e., by dilution with the unmetallated porphyrin. Eventually, 2D nanosheets are formed in situ directly on a substrate, through a simple protocol devised to reproduce the Langmuir–Schaefer conditions locally. Altogether these studies show that 2D spin qubit frameworks are ideal components to develop a hybrid quantum computing architecture.
The authors acknowledge funding from the Spanish MINECO through projects MAT2014-53961-R (O.R., E.N.), MAT2015-70868-ERC (O.R., A.U.), MAT2016-78257-R (I.G., M.A.A.), MAT2017-86826-R (O.R., E.N., A.U.), and CTQ2015-64486-R (P.J.A.), as well as from the Aragón government (DGA, consolidated group PLATON E31_17R). M.A.A. acknowledges the support of Spanish Ministerio de Educación for a FPU grant. This research used resources of the Advanced Light Source, which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231.
Databáze: OpenAIRE