On the Convex and Convex-Concave Solutions of Opposing Mixed Convection Boundary Layer Flow in a Porous Medium
Autor: | K. Boudjema Djeffal, M. Aiboudi, B. Brighi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Article Subject
Applied Mathematics lcsh:Mathematics 010102 general mathematics Mathematical analysis Regular polygon lcsh:QA1-939 01 natural sciences Nonlinear differential equations 010305 fluids & plasmas Boundary layer Flow (mathematics) Combined forced and natural convection 0103 physical sciences Boundary value problem 0101 mathematics Porous medium Analysis Mathematics Sign (mathematics) |
Zdroj: | Abstr. Appl. Anal. Abstract and Applied Analysis, Vol 2018 (2018) |
Popis: | In this paper, we are concerned with the solution of the third-order nonlinear differential equation f″′+ff″+βf′(f′-1)=0, satisfying the boundary conditions f(0)=a∈R, f′(0)=b<0, and f′(t)→λ, as t→+∞, where λ∈{0,1} and 0<β<1. The problem arises in the study of the opposing mixed convection approximation in a porous medium. We prove the existence, nonexistence, and the sign of convex and convex-concave solutions of the problem above according to the mixed convection parameter b<0 and the temperature parameter 0<β<1. |
Databáze: | OpenAIRE |
Externí odkaz: |