Autor: |
Zaki, A. S., Davis, J. M., Edgett, K. S., Giegengack, R., Roige, M., Conway, S., Schuster, M., Gupta, S., Salese, F., Sangwan, K. S., Fairén, A. G., Hughes, C. M., Pain, C. F., Castelltort, S. |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Journal of Geophysical Research-Planets |
ISSN: |
2169-9097 |
Popis: |
A widely hypothesized but complex transition from widespread fluvial activity to predominantly aeolian processes is inferred on Mars based on remote sensing data observations of ancient landforms. However, the lack of analysis of in situ martian fluvial deposits hinders our understanding of the flow regime nature and sustainability of the martian fluvial activity and the hunt for ancient life. Studying analogs from arid zones on Earth is fundamental to quantitatively understanding geomorphic processes and climate drivers that might have dominated during early Mars. Here we investigate the formation and preservation of fluvial depositional systems in the eastern Sahara, where the largest arid region on Earth hosts important repositories of past climatic changes. The fluvial systems are composed of well-preserved single-thread sinuous to branching ridges and fan-shaped deposits interpreted as deltas. The systems' configuration and sedimentary content suggest that ephemeral rivers carved these landforms by sequential intermittent episodes of erosion and deposition active for 10-100s years over ∼10,000 years during the late Quaternary. Subsequently, these landforms were sculpted by a marginal role of rainfall and aeolian processes with minimum erosion rates of 1.1 ± 0.2 mm/yr, supplying ∼96 ± 24 × 10 |
Databáze: |
OpenAIRE |
Externí odkaz: |
|