Locally-zero Groupoids and the Center of Bin(X)
Autor: | Hiba F. Fayoumi |
---|---|
Rok vydání: | 2020 |
Předmět: |
Mathematics::Operator Algebras
Semigroup Applied Mathematics General Mathematics Zero (complex analysis) Center (category theory) Binary number Mathematics - Rings and Algebras 20N02 Bin Identity (music) Combinatorics Binary operation Rings and Algebras (math.RA) Product (mathematics) FOS: Mathematics Mathematics |
DOI: | 10.48550/arxiv.2010.09220 |
Popis: | In this paper we introduce the notion of the center $ZBin(X)$ in the semigroup $Bin(X)$ of all binary systems on a set $X$, and show that if $(X,\bullet)\in ZBin(X)$, then $x\not=y$ implies $\{x,y\}=\{x\bullet y,y\bullet x\}$.Moreover, we show that a groupoid $(X,\bullet )\in ZBin(X)$ if and only if it is a locally-zero groupoid. Comment: 6 pages; http://koreascience.or.kr/article/JAKO201115037885418.pdf |
Databáze: | OpenAIRE |
Externí odkaz: |