Glasner's problem for Polish groups with metrizable universal minimal flow

Autor: Nguyen van Thé, Lionel
Přispěvatelé: Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), ANR-11-JS01-0008,Grupoloco,Groupes polonais et Logique continue(2011)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Annales de l'Institut Fourier
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2019, 69 (2)
Annales de l'Institut Fourier, 2019, 69 (2)
ISSN: 0373-0956
1777-5310
Popis: A problem of Glasner, now known as Glasner's problem, asks whether every minimally almost periodic, monothetic, Polish groups is extremely amenable. The purpose of this short note is to observe that a positive answer is obtained under the additional assumption that the universal minimal flow is metrizable.
9 pages; post-refereed version, incorporating various suggestions
Databáze: OpenAIRE