Glasner's problem for Polish groups with metrizable universal minimal flow
Autor: | Nguyen van Thé, Lionel |
---|---|
Přispěvatelé: | Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), ANR-11-JS01-0008,Grupoloco,Groupes polonais et Logique continue(2011) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
37B05 (Primary)
03C15 22F50 54H20 (Secondary) Glasner’s problem Minimal almost periodicity 2010 MSC: Primary: 37B05 Secondary: 03C15 22F50 54H20 [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] FOS: Mathematics Dynamical Systems (math.DS) Mathematics - Logic Mathematics - Dynamical Systems Logic (math.LO) Bohr compactification |
Zdroj: | Annales de l'Institut Fourier Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2019, 69 (2) Annales de l'Institut Fourier, 2019, 69 (2) |
ISSN: | 0373-0956 1777-5310 |
Popis: | A problem of Glasner, now known as Glasner's problem, asks whether every minimally almost periodic, monothetic, Polish groups is extremely amenable. The purpose of this short note is to observe that a positive answer is obtained under the additional assumption that the universal minimal flow is metrizable. 9 pages; post-refereed version, incorporating various suggestions |
Databáze: | OpenAIRE |
Externí odkaz: |