A phantom axon setup for validating models of action potential recordings
Autor: | Serge Bernard, Olivier Rossel, Guy Cathébras, David Guiraud, Fabien Soulier |
---|---|
Přispěvatelé: | Control of Artificial Movement and Intuitive Neuroprosthesis (CAMIN), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Smart Integrated Electronic Systems (SmartIES), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2016 |
Předmět: |
Computer science
Acoustics 0206 medical engineering Biomedical Engineering Action Potentials 02 engineering and technology Adaptive arithmetic coding Mixture of geometric distributions Imaging phantom 03 medical and health sciences 0302 clinical medicine Electroneurogram medicine Electronic engineering In vivo measurements Expectation–maximization algorithm [INFO]Computer Science [cs] Computer Simulation Axon Electrodes Monitoring Physiologic Node of Ranvier Action potential amplitude Equipment Design 020601 biomedical engineering Axons Action (physics) Computer Science Applications medicine.anatomical_structure Amplitude nervous system Lossless image compression 030217 neurology & neurosurgery |
Zdroj: | Medical and Biological Engineering and Computing Medical and Biological Engineering and Computing, Springer Verlag, 2016, 10 (4), pp.671-678. ⟨10.1007/s11517-016-1463-3⟩ Medical and Biological Engineering and Computing, 2016, 10 (4), pp.671-678. ⟨10.1007/s11517-016-1463-3⟩ |
ISSN: | 1741-0444 0140-0118 |
DOI: | 10.1007/s11517-016-1463-3 |
Popis: | Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %. |
Databáze: | OpenAIRE |
Externí odkaz: |