Improving stability of moving particle semi-implicit method by source terms based on time-scale correction of particle-level impulses

Autor: Rubens Augusto Amaro Junior, Liang-Yee Cheng, Eric Henrique Favero
Rok vydání: 2021
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
ISSN: 0955-7997
Popis: The aim of this paper is to investigate the unstable nature of pressure computation focusing on incompressible flow modeling through the projection-based particle methods. A new approach from the original viewpoint of the momentum conservation regarding particle-level collisions, hereinafter refered to as time-scale correction of particle-level impulses (TCPI), is proposed to derive new source terms of pressure Poisson equation (PPE). This results in more stable computations with drastic reduction of unphysical pressure oscillations and more robust simulation with pressure magnitudes almost independent to time step. Moreover, compared to other strategies, no additional computational effort is required, its implementation is extremely simple, and the only numerical parameter is the propagation speed of the perturbations, of which the calibration is much more straightforward due to its physical meaning. Simulations were carried out using moving particle semi-implicit (MPS) method improved by the proposed approach. The comparisons of computed results with theoretical and experimental ones confirmed the effectiveness of the proposed approach.
Comment: 70 Pages, 35 Figures
Databáze: OpenAIRE