MIMO Filters based on Robust Rank-Constrained Kronecker Covariance Matrix Estimation

Autor: Arnaud Breloy, Yongchan Gao, Frédéric Pascal, Guillaume Ginolhac
Přispěvatelé: Laboratoire Energétique Mécanique Electromagnétisme (LEME), Université Paris Nanterre (UPN), Laboratoire d'Informatique, Systèmes, Traitement de l'Information et de la Connaissance (LISTIC), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Xidian University, Laboratoire des signaux et systèmes (L2S), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-17-ASTR-0015,MARGARITA,Nouvelles Techniques Robustes et d'Inférences pour le Radar Adaptatif Moderne(2017)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Signal Processing
Signal Processing, 2021, 187, pp.108-116. ⟨10.1016/j.sigpro.2021.108116⟩
Signal Processing, Elsevier, 2021, 187, pp.108-116. ⟨10.1016/j.sigpro.2021.108116⟩
ISSN: 0165-1684
1872-7557
DOI: 10.1016/j.sigpro.2021.108116⟩
Popis: International audience; In this paper, we propose a new estimator of the covariance matrix parameters when observations follow a mixture of a deterministic Compound-Gaussian (CG) and a white Gaussian noise. In particular, the covariance matrix of the CG contribution is assumed to be expressed as the Kronecker product of two low-rank matrices, which is a structure often involved in MIMO array processing. The proposed estimator is then obtained by maximizing the likelihood of the data with the use of a specifically tailored block Majorization-Minimization (MM) algorithm. Finally, the method is evaluated in terms of adaptive filtering on a MIMO-STAP radar setting, showing important improvements over standard processing.
Databáze: OpenAIRE