On the volume of sections of a convex body by cones

Autor: Vlad Yaskin, Matthieu Fradelizi, Mathieu Meyer
Přispěvatelé: Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA), Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematical Statistical Sciences, University of Alberta, Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2017, 145, pp.3153-3164. ⟨10.1090/proc/13457⟩
ISSN: 0002-9939
1088-6826
DOI: 10.1090/proc/13457⟩
Popis: Let $K$ be a convex body in $\mathbb R^n$. We prove that in small codimensions, the sections of a convex body through the centroid are quite symmetric with respect to volume. As a consequence of our estimates we give a positive answer to a problem posed by M. Meyer and S. Reisner regarding convex intersection bodies.
13 pages
Databáze: OpenAIRE