On the volume of sections of a convex body by cones
Autor: | Vlad Yaskin, Matthieu Fradelizi, Mathieu Meyer |
---|---|
Přispěvatelé: | Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA), Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematical Statistical Sciences, University of Alberta, Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Concave function
Mathematics::Commutative Algebra 52A20 52A40 Applied Mathematics General Mathematics 010102 general mathematics Regular polygon Centroid Metric Geometry (math.MG) 0102 computer and information sciences [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] 01 natural sciences Functional Analysis (math.FA) Section (fiber bundle) Combinatorics Mathematics - Functional Analysis Intersection Mathematics - Metric Geometry 010201 computation theory & mathematics FOS: Mathematics Convex body 0101 mathematics Volume (compression) Mathematics |
Zdroj: | Proceedings of the American Mathematical Society Proceedings of the American Mathematical Society, American Mathematical Society, 2017, 145, pp.3153-3164. ⟨10.1090/proc/13457⟩ |
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/13457⟩ |
Popis: | Let $K$ be a convex body in $\mathbb R^n$. We prove that in small codimensions, the sections of a convex body through the centroid are quite symmetric with respect to volume. As a consequence of our estimates we give a positive answer to a problem posed by M. Meyer and S. Reisner regarding convex intersection bodies. 13 pages |
Databáze: | OpenAIRE |
Externí odkaz: |