MMAC1/PTEN inhibits cell growth and induces chemosensitivity to doxorubicin in human bladder cancer cells

Autor: H. Barton Grossman, Peter A. Steck, Michael A. Davies, Monica Liebert, Motoyoshi Tanaka, Dimpy Koul
Rok vydání: 2000
Předmět:
Zdroj: Oncogene. 19:5406-5412
ISSN: 1476-5594
0950-9232
Popis: The development and progression of bladder cancer is associated with multiple alterations in the genome, including loss of chromosome 10. Recently, MMAC1/PTEN, a phosphatidylinositol phosphatase, has been mapped to chromosome 10q23. We previously demonstrated that MMAC1/PTEN has tumor suppressive properties in glioblastoma and prostate cancer. To investigate the efficacy of gene therapy with MMAC1/PTEN, we examined whether the exogenous introduction of MMAC1/PTEN via an adenoviral vector (Ad-MMAC) can inhibit tumor growth and reverse drug resistance to doxorubicin in human bladder cancer cells. Human bladder cancer cell lines UM-UC-3 and T24 were infected with Ad-MMAC to induce exogenous expression of MMAC1/PTEN. The cells were then analysed for cell growth and expression of phosphorylated protein kinase B (Akt/PKB) and MMAC1/PTEN. UM-UC-6dox, a doxorubicin resistant subline, was infected with Ad-MMAC to evaluate its role in reversing drug resistance to doxorubicin. We found that MMAC1/PTEN suppressed tumor growth in UM-UC-3 and T24 cells with arrest in the G1 phase of the cell cycle. We also showed that gene therapy with MMAC1/PTEN abrogated phosphorylated Akt/PKB expression in UM-UC-3, T24 and UMUC-6dox cells, and restored doxorubicin sensitivity in UM-UC-6dox. These data demonstrate that MMAC1/PTEN can induce growth suppression and increase sensitivity to doxorubicin in bladder cancer cells and suggest that the MMAC1/PTEN gene and its pathways can be therapeutic targets for bladder cancer.
Databáze: OpenAIRE