Complementary Numerical Sets
Autor: | Deepesh Singhal, Matthew Guhl, Jazmine Juarez, Vadim Ponomarenko, Rebecca Rechkin |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Deepesh Singhal |
Popis: | A numerical set $S$ is a cofinite subset of $\mathbb{N}$ which contains $0$. We use the natural bijection between numerical sets and Young diagrams to define a numerical set $\widetilde{S}$, such that their Young diagrams are complements. We determine various properties of $\widetilde{S}$, particularly with an eye to closure under addition (for both $S$ and $\widetilde{S}$), which promotes a numerical set to become a numerical semigroup. 12 pages |
Databáze: | OpenAIRE |
Externí odkaz: |