Popis: |
Reverse genetics uses loss-of-function alleles to interrogate gene function. The advent of CRISPR/Cas9-based gene editing now allows to generate knock-out alleles for any gene and entire gene families. Even in the model plantArabidopsis thaliana, gene editing is welcomed as T-DNA insertion lines do not always generate null alleles. Here, we show efficient generation of heritable mutations in Arabidopsis using CRISPR/Cas9 with a workload similar to generating overexpression lines. We obtain Cas9 null-segregants with bi-allelic mutations in the T2 generation. Out of seven new mutant alleles we report here, one allele forGRXS17, the ortholog of human GRX3/PICOT, did not phenocopy previously characterized nulls. Notwithstanding, the mutation caused a frameshift and triggered nonsense-mediated decay. We demonstrate that our workflow is also compatible with a dual sgRNA approach in which a gene is targeted by two sgRNAs simultaneously. This paired nuclease method can result in a more reliable loss-of-function alleles that lack a large essential part of the gene. The ease in the CRISPR/Cas9 workflow should help in the eventual generation of true null alleles of every gene in the Arabidopsis genome, which will advance both basic and applied plant research.One-sentence summaryWe present a dual sgRNA approach to delete Arabidopsis gene 34 fragments in order to obtain reliable functional knock-outs. |