Multiplier ideals in two-dimensional local rings with rational singularities
Autor: | Maria Alberich-Carramiñana, Ferran Dachs-Cadefau, Josep Àlvarez Montaner |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions, University of Leuven, Generalitat de Catalunya, European Commission, Ministerio de Economía y Competitividad (España) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
jumping numbers
General Mathematics Multiplier ideals 14 Algebraic geometry::14J Surfaces and higher-dimensional varieties [Classificació AMS] Commutative Algebra (math.AC) 01 natural sciences Multiplier (Fourier analysis) Mathematics - Algebraic Geometry 0103 physical sciences ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION FOS: Mathematics 0101 mathematics Algebra over a field Algebraic Geometry (math.AG) Mathematics 14 Algebraic geometry::14F (Co)homology theory [Classificació AMS] Mathematics::Commutative Algebra 010102 general mathematics Local ring Matemàtiques i estadística [Àrees temàtiques de la UPC] Mathematics - Commutative Algebra Geometry Algebraic Geometria algebraica Local rings Anells locals 14F18 010307 mathematical physics Humanities 14J17 rational surface singularity |
Zdroj: | Michigan Math. J. 65, iss. 2 (2016), 287-320 Scopus-Elsevier UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Recercat. Dipósit de la Recerca de Catalunya instname Digital.CSIC. Repositorio Institucional del CSIC |
Popis: | arXiv:1412.3605v2 The aim of this paper is to study jumping numbers and multiplier ideals of any ideal in a two-dimensional local ring with a rational singularity. In particular we reveal which information encoded in a multiplier ideal determines the next jumping number. This leads to an algorithm to compute sequentially the jumping numbers and the whole chain of multiplier ideals in any desired range. As a consequence of our method we develop the notion of jumping divisor that allows to describe the jump between two consecutive multiplier ideals. In particular we find a unique minimal jumping divisor that is studied extensively. All three authors were partially supported by Generalitat de Catalunya 2014 SGR-634 project and Spanish Ministerio de Economía y Competitividad MTM2012-38122-03-01/FEDER. FDC is also supported by the KU Leuven grant OT/11/069. |
Databáze: | OpenAIRE |
Externí odkaz: |