Multiplier ideals in two-dimensional local rings with rational singularities

Autor: Maria Alberich-Carramiñana, Ferran Dachs-Cadefau, Josep Àlvarez Montaner
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions, University of Leuven, Generalitat de Catalunya, European Commission, Ministerio de Economía y Competitividad (España)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
jumping numbers
General Mathematics
Multiplier ideals
14 Algebraic geometry::14J Surfaces and higher-dimensional varieties [Classificació AMS]
Commutative Algebra (math.AC)
01 natural sciences
Multiplier (Fourier analysis)
Mathematics - Algebraic Geometry
0103 physical sciences
ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
FOS: Mathematics
0101 mathematics
Algebra over a field
Algebraic Geometry (math.AG)
Mathematics
14 Algebraic geometry::14F (Co)homology theory [Classificació AMS]
Mathematics::Commutative Algebra
010102 general mathematics
Local ring
Matemàtiques i estadística [Àrees temàtiques de la UPC]
Mathematics - Commutative Algebra
Geometry
Algebraic

Geometria algebraica
Local rings
Anells locals
14F18
010307 mathematical physics
Humanities
14J17
rational surface singularity
Zdroj: Michigan Math. J. 65, iss. 2 (2016), 287-320
Scopus-Elsevier
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Digital.CSIC. Repositorio Institucional del CSIC
Popis: arXiv:1412.3605v2
The aim of this paper is to study jumping numbers and multiplier ideals of any ideal in a two-dimensional local ring with a rational singularity. In particular we reveal which information encoded in a multiplier ideal determines the next jumping number. This leads to an algorithm to compute sequentially the jumping numbers and the whole chain of multiplier ideals in any desired range. As a consequence of our method we develop the notion of jumping divisor that allows to describe the jump between two consecutive multiplier ideals. In particular we find a unique minimal jumping divisor that is studied extensively.
All three authors were partially supported by Generalitat de Catalunya 2014 SGR-634 project and Spanish Ministerio de Economía y Competitividad MTM2012-38122-03-01/FEDER. FDC is also supported by the KU Leuven grant OT/11/069.
Databáze: OpenAIRE