Caristi, Nadler and H + -Type Contractive Mappings and Their Fixed Points in θ-Metric Spaces
Autor: | Stojan Radenović, Jelena Vujaković, Deepesh Kumar Patel, Pradip Ramesh Patle |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Discrete mathematics
Physics and Astronomy (miscellaneous) Generalization General Mathematics 010102 general mathematics multivalued mapping Fixed-point theorem Context (language use) Fixed point Type (model theory) 01 natural sciences 010101 applied mathematics Metric space fixed point Chemistry (miscellaneous) Bounded function TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY Metric (mathematics) Computer Science (miscellaneous) θ-metric θ-Hausdorff distance 0101 mathematics Mathematics MathematicsofComputing_DISCRETEMATHEMATICS |
Zdroj: | Symmetry Volume 11 Issue 4 |
ISSN: | 2073-8994 |
DOI: | 10.3390/sym11040504 |
Popis: | A new proper generalization of metric called as &theta metric is introduced by Khojasteh et al. (Mathematical Problems in Engineering (2013) Article ID 504609). In this paper, first we prove the Caristi type fixed point theorem in an alternative and comparatively new way in the context of &theta metric. We also investigate two &theta metrics on CB ( X ) (family of nonempty closed and bounded subsets of a set X). Furthermore, using the obtained &theta metrics on CB ( X ) , we prove two new fixed point results for multi-functions which generalize the results of Nadler and Lim type in the context of such spaces. In order to illustrate the usability of our results, we equipped them with competent examples. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |