Universal short-time dynamics: boundary functional renormalization group for a temperature quench
Autor: | Andrea Gambassi, Alessio Chiocchetta, Jamir Marino, Sebastian Diehl |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Physics
High Energy Physics - Theory Statistical Mechanics (cond-mat.stat-mech) Monte Carlo method FOS: Physical sciences Boundary (topology) Non-equilibrium thermodynamics 01 natural sciences 010305 fluids & plasmas Settore FIS/02 - Fisica Teorica Modelli e Metodi Matematici EQUILIBRIUM High Energy Physics - Theory (hep-th) NONEQUILIBRIUM DYNAMICS SYSTEMS Time dynamics 0103 physical sciences QUANTUM-FIELD THEORY Exponent Order (group theory) Functional renormalization group Statistical physics 010306 general physics CRITICAL RELAXATION Condensed Matter - Statistical Mechanics |
Zdroj: | Physical Review B |
Popis: | We present a method to calculate short-time non-equilibrium universal exponents within the functional renormalization-group scheme. As an example, we consider the classical critical dynamics of the relaxational model A after a quench of the temperature of the system and calculate the initial slip exponent which characterizes the non-equilibrium universal short-time behaviour of both the order parameter and correlation functions. The value of this exponent is found to be consistent with the result of a perturbative dimensional expansion and of Monte Carlo simulations in three spatial dimensions. |
Databáze: | OpenAIRE |
Externí odkaz: |