Incompressibility Estimates for the Laughlin Phase
Autor: | Nicolas Rougerie, Jakob Yngvason |
---|---|
Přispěvatelé: | Laboratoire de physique et modélisation des milieux condensés (LPM2C), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Erwin Schrödinger Institute for Mathematical Physics, ESIMP, ANR-13-JS01-0005,MaThoStaQ,Méthodes mathématiques pour le problème à N corps en mécanique statistique et quantique(2013) |
Rok vydání: | 2014 |
Předmět: |
[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]
Complex system FOS: Physical sciences 01 natural sciences Rigidity (electromagnetism) [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] Quantum mechanics Mesoscale and Nanoscale Physics (cond-mat.mes-hall) 0103 physical sciences Perpendicular magnetic field 0101 mathematics 010306 general physics Wave function Quantum [PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] Mathematical Physics Physics Large particle Condensed Matter - Mesoscale and Nanoscale Physics 010102 general mathematics Statistical and Nonlinear Physics Mathematical Physics (math-ph) Landau quantization Quantum Gases (cond-mat.quant-gas) Fractional quantum Hall effect [PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el] Condensed Matter - Quantum Gases |
Zdroj: | Communications in Mathematical Physics. 336:1109-1140 |
ISSN: | 1432-0916 0010-3616 |
DOI: | 10.1007/s00220-014-2232-5 |
Popis: | This paper has its motivation in the study of the Fractional Quantum Hall Effect. We consider 2D quantum particles submitted to a strong perpendicular magnetic field, reducing admissible wave functions to those of the Lowest Landau Level. When repulsive interactions are strong enough in this model, highly correlated states emerge, built on Laughlin’s famous wave function. We investigate a model for the response of such strongly correlated ground states to variations of an external potential. This leads to a family of variational problems of a new type. Our main results are rigorous energy estimates demonstrating a strong rigidity of the response of strongly correlated states to the external potential. In particular, we obtain estimates indicating that there is a universal bound on the maximum local density of these states in the limit of large particle number. We refer to these as incompressibility estimates. |
Databáze: | OpenAIRE |
Externí odkaz: |