GigaSOM.jl: High-performance clustering and visualization of huge cytometry datasets
Autor: | Markus Ollert, Oliver Hunewald, Reinhard Schneider, Laurent Heirendt, Venkata P. Satagopam, Vasco Verissimo, Jiří Vondrášek, Christophe Trefois, Miroslav Kratochvíl |
---|---|
Přispěvatelé: | ELIXIR CZ LM2018131 (MEYS) [sponsor], FNR AFR-RIKEN bilateral program (TregBar 2015/11228353) [sponsor], FNR PRIDE Doctoral Training Unit program (PRIDE/11012546/NEXTIMMUNE) [sponsor], Institute of Organic Chemistry and Biochemistry of the CAS (RVO: 61388963) [sponsor], ELIXIR Staff Exchange programme 2020 [sponsor], University of Luxembourg: High Performance Computing - ULHPC [research center], Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group) [research center] |
Rok vydání: | 2020 |
Předmět: |
Self-organizing map
single-cell cytometry Speedup Computer science AcademicSubjects/SCI02254 Health Informatics self-organizing maps Multidisciplinary general & others [F99] [Life sciences] computer.software_genre Multidisciplinaire généralités & autres [C99] [Ingénierie informatique & technologie] Multidisciplinaire généralités & autres [F99] [Sciences du vivant] 03 medical and health sciences Mice 0302 clinical medicine Software Technical Note Animals Cluster Analysis Cluster analysis 030304 developmental biology dimensionality reduction 0303 health sciences business.industry Dimensionality reduction Multidisciplinary general & others [C99] [Engineering computing & technology] Process (computing) Julia high-performance computing Supercomputer Computer Science Applications Visualization Data point Scalability Key (cryptography) AcademicSubjects/SCI00960 Programming Languages Data mining business computer Algorithms 030215 immunology clustering |
Zdroj: | GigaScience Kratochvíl, M, Hunewald, O, Heirendt, L, Verissimo, V, Vondrášek, J, Satagopam, V P, Schneider, R, Trefois, C & Ollert, M 2020, ' GigaSOM.jl : High-performance clustering and visualization of huge cytometry datasets ', GigaScience, vol. 9, no. 11, giaa127 . https://doi.org/10.1093/gigascience/giaa127 |
ISSN: | 2047-217X |
DOI: | 10.1093/gigascience/giaa127 |
Popis: | BackgroundThe amount of data generated in large clinical and phenotyping studies that use single-cell cytometry is constantly growing. Recent technological advances allow to easily generate data with hundreds of millions of single-cell data points with more than 40 parameters, originating from thousands of individual samples. The analysis of that amount of high-dimensional data becomes demanding in both hardware and software of high-performance computational resources. Current software tools often do not scale to the datasets of such size; users are thus forced to down-sample the data to bearable sizes, in turn losing accuracy and ability to detect many underlying complex phenomena.ResultsWe present GigaSOM.jl, a fast and scalable implementation of clustering and dimensionality-reduction for flow and mass cytometry data. The implementation of GigaSOM.jl in the high-level and high-performance programming language Julia makes it accessible to the scientific community, and allows for efficient handling and processing of datasets with billions of data points using distributed computing infrastructures. We describe the design of GigaSOM.jl, measure its performance and horizontal scaling capability, and showcase the functionality on a large dataset from a recent study.ConclusionsGigaSOM.jl facilitates utilization of the commonly available high-performance computing resources to process the largest available datasets within minutes, while producing results of the same quality as the current state-of-art software. Measurements indicate that the performance scales to much larger datasets. The example use on the data from an massive mouse phenotyping effort confirms the applicability of GigaSOM.jl to huge-scale studies.Key pointsGigaSOM.jl improves the applicability of FlowSOM-style single-cell cytometry data analysis by increasing the acceptable dataset size to billions of single cells.Significant speedup over current methods is achieved by distributed processing and utilization of efficient algorithms.GigaSOM.jl package includes support for fast visualization of multidimensional data. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |