Structural basis of the activation of c-MET receptor

Autor: Xuewu Zhang, Zhiming Chen, Emiko Uchikawa, Guan Yu Xiao, Xiao Chen Bai
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nature Communications, Vol 12, Iss 1, Pp 1-14 (2021)
Nature Communications
ISSN: 2041-1723
Popis: The c-MET receptor is a receptor tyrosine kinase (RTK) that plays essential roles in normal cell development and motility. Aberrant activation of c-MET can lead to both tumors growth and metastatic progression of cancer cells. C-MET can be activated by either hepatocyte growth factor (HGF), or its natural isoform NK1. Here, we report the cryo-EM structures of c-MET/HGF and c-MET/NK1 complexes in the active state. The c-MET/HGF complex structure reveals that, by utilizing two distinct interfaces, one HGF molecule is sufficient to induce a specific dimerization mode of c-MET for receptor activation. The binding of heparin as well as a second HGF to the 2:1 c-MET:HGF complex further stabilize this active conformation. Distinct to HGF, NK1 forms a stable dimer, and bridges two c-METs in a symmetrical manner for activation. Collectively, our studies provide structural insights into the activation mechanisms of c-MET, and reveal how two isoforms of the same ligand use dramatically different mechanisms to activate the receptor.
Activation of c-MET receptor tyrosine kinase involves hepatocyte growth factor (HGF) and glycosaminoglycans, but the molecular mechanism is still under debate. Here, the authors present cryoEM structures of c-MET bound to two HGF splice variants and heparin, revealing the structural basis for c-MET activation.
Databáze: OpenAIRE