Parametrix for a semiclassical subelliptic operator
Autor: | Hart F. Smith |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Mathematics::Analysis of PDEs
subelliptic equations Semiclassical physics Type (model theory) 01 natural sciences Mathematics::K-Theory and Homology 0103 physical sciences 0101 mathematics 35S05 Mathematics::Symplectic Geometry Brownian motion Mathematical physics Mathematics Numerical Analysis Parametrix Applied Mathematics Operator (physics) 010102 general mathematics Riemannian manifold Mathematics::Spectral Theory 35H20 Sobolev space resonance 010307 mathematical physics Analysis Generator (mathematics) semiclassical analysis |
Zdroj: | Anal. PDE 13, no. 8 (2020), 2375-2398 |
Popis: | We demonstrate a parametrix construction, together with associated pseudodifferential operator calculus, for an operator of sum-of-squares type with semiclassical parameter. The form of operator we consider includes the generator of kinetic Brownian motion on the cosphere bundle of a Riemannian manifold. Regularity estimates in semiclassical Sobolev spaces are proven by establishing mapping properties for the parametrix. |
Databáze: | OpenAIRE |
Externí odkaz: |