Multiple Endmember Spectral Mixture Analysis (MESMA) Applied to the Study of Habitat Diversity in the Fine-Grained Landscapes of the Cantabrian Mountains

Autor: Susana Suárez-Seoane, Víctor Fernández-García, Carmen Quintano, Leonor Calvo, José Manuel Fernández-Guisuraga, Elena Marcos, Alfonso Fernández-Manso
Přispěvatelé: Ecologia, Facultad de Ciencias Biologicas y Ambientales
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Beta diversity
Endmember
Spectroscopic imaging
010504 meteorology & atmospheric sciences
Gamma diversity
Biología
0211 other engineering and technologies
Epsilon diversity
Delta diversity
02 engineering and technology
Ingeniería forestal
01 natural sciences
Diversity index
Landsat-8 OLI
spectral unmixing
Paisaje - España - Cordillera Cantábrica
Alpha diversity
Ecosystem diversity
lcsh:Science
021101 geological & geomatics engineering
0105 earth and related environmental sciences
Landsat
Iberian Peninsula
alpha diversity
beta diversity
gamma diversity
delta diversity
epsilon diversity
Spectral signature
2417.13 Ecología Vegetal
Vegetation
3307 Tecnología Electrónica
Spectrum analysis
Ecología. Medio ambiente
Image processing - Digital techniques
Spectral imaging
2499 Otras Especialidades Biológicas
General Earth and Planetary Sciences
Environmental science
lcsh:Q
Physical geography
Multiple Endmember Spectral Mixture Analysis (MESMA)
Spectral unmixing
3199 Otras Especialidades Agrarias
Zdroj: Remote Sensing, Vol 13, Iss 979, p 979 (2021)
Scopus
RUO. Repositorio Institucional de la Universidad de Oviedo
instname
Remote Sensing; Volume 13; Issue 5; Pages: 979
BULERIA: Repositorio Institucional de la Universidad de León
Universidad de León
BULERIA. Repositorio Institucional de la Universidad de León
Instituto de Salud Carlos III (ISCIII)
ISSN: 2072-4292
Popis: Producción Científica
Heterogeneous and patchy landscapes where vegetation and abiotic factors vary at small spatial scale (fine-grained landscapes) represent a challenge for habitat diversity mapping using remote sensing imagery. In this context, techniques of spectral mixture analysis may have an advantage over traditional methods of land cover classification because they allow to decompose the spectral signature of a mixed pixel into several endmembers and their respective abundances. In this work, we present the application of Multiple Endmember Spectral Mixture Analysis (MESMA) to quantify habitat diversity and assess the compositional turnover at different spatial scales in the fine-grained landscapes of the Cantabrian Mountains (northwestern Iberian Peninsula). A Landsat-8 OLI scene and high-resolution orthophotographs (25 cm) were used to build a region-specific spectral library of the main types of habitats in this region (arboreal vegetation; shrubby vegetation; herbaceous vegetation; rocks–soil and water bodies). We optimized the spectral library with the Iterative Endmember Selection (IES) method and we applied MESMA to unmix the Landsat scene into five fraction images representing the five defined habitats (root mean square error, RMSE ≤ 0.025 in 99.45% of the pixels). The fraction images were validated by linear regressions using 250 reference plots from the orthophotographs and then used to calculate habitat diversity at the pixel (α-diversity: 30 × 30 m), landscape (γ-diversity: 1 × 1 km) and regional (ε-diversity: 110 × 33 km) scales and the compositional turnover (β- and δ-diversity) according to Simpson’s diversity index. Richness and evenness were also computed. Results showed that fraction images were highly related to reference data (R2 ≥ 0.73 and RMSE ≤ 0.18). In general, our findings indicated that habitat diversity was highly dependent on the spatial scale, with values for the Simpson index ranging from 0.20 ± 0.22 for α-diversity to 0.60 ± 0.09 for γ-diversity and 0.72 ± 0.11 for ε-diversity. Accordingly, we found β-diversity to be higher than δ-diversity. This work contributes to advance in the estimation of ecological diversity in complex landscapes, showing the potential of MESMA to quantify habitat diversity in a comprehensive way using Landsat imagery.
Ministerio de Agricultura, Pesca y Alimentación - (Project 0190020007497)
Ministerio de Educación, Cultura y Deporte - (Project FPU16/03070)
Databáze: OpenAIRE