Popis: |
Regulating metal surfaces with micro-/nanoscale structures is of great significance for both material science and potential applications. However, the intrinsic properties of metals, such as fixed isotropic moduli and inflexible structures, in a sense present major limitations in developing next-generation smart patterned surfaces. In this work, a facile and general patterning strategy is proposed to endow insensitive metal surfaces with controllable spontaneous topologies and dynamic performance by exquisitely introducing an essential photosensitive interlayer. The arresting anthracene-containing photocrosslinking interlayer can selectively predetermine the anisotropic property of compliant bilayers without damaging metals' homogeneous properties, and realize a changeable stiff/soft layer. Furthermore, the mechanical transition mechanism of the self-adaptive wrinkling modes in metal-based trilayer systems is revealed to pave the pathway for regulating functional wrinkled metal surfaces. This photodriven metal patterning strategy can promote the development of brand-new methods for tuning the instability of multilayered materials, and be potentially applied in smart optical devices with dynamic reflectance, including light gratings and "magic" mirrors. |