Spectroscopic Studies and Characterization of a Novel Electron-Transfer Chain from Escherichia coli Involving a Flavorubredoxin and Its Flavoprotein Reductase Partner
Autor: | João B. Vicente, Cláudio M. Gomes, and Alain Wasserfallen, Miguel Teixeira |
---|---|
Rok vydání: | 2000 |
Předmět: |
Flavin Mononucleotide
Molecular Sequence Data Flavoprotein Reductase medicine.disease_cause Biochemistry Electron Transport Open Reading Frames Electron transfer Redox titration Rubredoxin Escherichia coli medicine Amino Acid Sequence Flavoproteins biology Chemistry Rubredoxins Electron Spin Resonance Spectroscopy Titrimetry Electron transport chain Crystallography Multigene Family biology.protein Spectrophotometry Ultraviolet Oxidoreductases Oxidation-Reduction Cysteine |
Zdroj: | Biochemistry. 39:16230-16237 |
ISSN: | 1520-4995 0006-2960 |
DOI: | 10.1021/bi001844y |
Popis: | A novel two-component enzyme system from Escherichia coli involving a flavorubredoxin (FlRd) and its reductase was studied in terms of spectroscopic, redox, and biochemical properties of its constituents. FlRd contains one FMN and one rubredoxin (Rd) center per monomer. To assess the role of the Rd domain, FlRd and a truncated form lacking the Rd domain (FlRdDeltaRd), were characterized. FlRd contains 2.9+/-0.5 iron atoms/subunit, whereas FlRdDeltaRd contains 2.1+/-0.6 iron atoms/subunit. While for FlRd one iron atom corresponds to the Rd center, the other two irons, also present in FlRdDeltaRd, are most probably due to a di-iron site. Redox titrations of FlRd using EPR and visible spectroscopies allowed us to determine that the Rd site has a reduction potential of -140+/-15 mV, whereas the FMN undergoes reduction via a red-semiquinone, at -140+/-15 mV (Fl(ox)/Fl(sq)) and -180+/-15 mV (Fl(sq)/Fl(red)), at pH 7.6. The Rd site has the lowest potential ever reported for a Rd center, which may be correlated with specific amino acid substitutions close to both cysteine clusters. The gene adjacent to that encoding FlRd was found to code for an FAD-containing protein, (flavo)rubredoxin reductase (FlRd-reductase), which is capable of mediating electron transfer from NADH to Desulfovibrio gigas Rd as well as to E. coli FlRd. Furthermore, electron donation was found to proceed through the Rd domain of FlRd as the Rd-truncated protein does not react with FlRd-reductase. In vitro, this pathway links NADH oxidation with dioxygen reduction. The possible function of this chain is discussed considering the presence of FlRd homologues in all known genomes of anaerobes and facultative aerobes. |
Databáze: | OpenAIRE |
Externí odkaz: |