Sphinx1: Spectrometric Photon Counting and Integration Pixel for X-Ray Imaging with a 100 Electrons LSB

Autor: Bertrand Dupont, Gilles Sicard, Loick Verger, Marc Arques, Michael Tchagaspanian, Amr Habib, Pierre Rohr
Přispěvatelé: Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), iROc Technologies (IROC TECHNOLOGIES), Cadence Connection-EDA Consortium-FSA-Cubic Micro, Techniques de l'Informatique et de la Microélectronique pour l'Architecture des systèmes intégrés (TIMA), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Electronique et des Technologies de l'Information (CEA-LETI), Université Grenoble Alpes (UGA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Techniques of Informatics and Microelectronics for integrated systems Architecture (TIMA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Torella, Lucie
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: IEEE Medical Imaging Conference (MIC'13)
IEEE Medical Imaging Conference (MIC'13), Oct 2013, Seoul, South Korea. pp.M09-4
Popis: Sphinx1 is a novel pixel architecture adapted for X-ray imaging that can detect radiation by photon counting and by charge integration. In photon counting mode, each photon is compensated by one or more counter-charge packets which can be dimensioned at a level as low as 100 electrons and the number of injected counter-charge packets indicates the incoming photon energy, thus allowing a spectrometric detection. The pixel is also able to detect radiation by integrating the charges deposited by all incoming photons and converting this analog value into a digital data with a least significant bit (LSB) of 100 electrons through the use of the counter-charge concept. In this paper, Sphinx1 pixel architecture is presented with emphasis on the counter-charge design, and the two modes of operation are described in detail. The pixel was simulated using Eldo simulator. Simulation results indicate an equivalent noise charge (ENC) of 48 electrons-rms for a detector capacitance of 75 fF. The LSB linearity and the ENC are further studied for different values of detector capacitances. The analog and digital power consumptions are calculated to be less than $1~\mu\hbox{W}$ in static conditions, proving the architecture to be suitable for large area detectors. Finally, corner simulations show a consistent performance against transistors mismatch. Proof of concept test chip of $ 5~\hbox{mm}\times5~\hbox{mm}$ . test chip is being designed fabricated in CMOS $0.13~\mu\hbox{m}$ technology, with a pixel pitch of $200 ~\mu\hbox{m}$ .
Databáze: OpenAIRE