Hardy spaces of generalized analytic functions and composition operators
Autor: | Elodie Pozzi |
---|---|
Rok vydání: | 2018 |
Předmět: |
Mathematics::Functional Analysis
Pure mathematics composition operators Applied Mathematics 010102 general mathematics Mathematics::Classical Analysis and ODEs Hardy space Composition (combinatorics) 30c62 01 natural sciences symbols.namesake 47b33 generalized analyticity 30h10 hardy spaces QA1-939 symbols 0101 mathematics Mathematics Analysis Analytic function |
Zdroj: | Concrete Operators, Vol 5, Iss 1, Pp 9-23 (2018) |
ISSN: | 2299-3282 |
DOI: | 10.1515/conop-2018-0002 |
Popis: | We present some recent results on Hardy spaces of generalized analytic functions on D specifying their link with the analytic Hardy spaces. Their definition can be extended to more general domains Ω . We discuss the way to extend such definitions to more general domains that depends on the regularity of the boundary of the domain ∂Ω. The generalization over general domains leads to the study of the invertibility of composition operators between Hardy spaces of generalized analytic functions; at the end of the paper, we discuss invertibility and Fredholm property of the composition operator C∅ on Hardy spaces of generalized analytic functions on a simply connected Dini-smooth domain for an analytic symbol ∅. |
Databáze: | OpenAIRE |
Externí odkaz: |