Epigenetic regulation of osteogenesis: human embryonic palatal mesenchymal cells
Autor: | Nicole Mahanian, Riana Cayabyab, Francesco Chiappelli, Jay Sison, Andre Barkhordarian |
---|---|
Rok vydání: | 2011 |
Předmět: |
Pathology
medicine.medical_specialty Stromal cell 1.1 Normal biological development and functioning Mesenchyme STRO 1 human embryonic palatal mesenchyme stem cell (HEPM) Biology Regenerative Medicine Human mesenchymal stem cells Stem Cell Research - Nonembryonic - Human Underpinning research medicine Dental/Oral and Craniofacial Disease Osteoinductive medium (OIM) Bone regeneration Runx 2 BGJb medium Mesenchymal stem cell Osteoinductive medium Osteoblast General Medicine Hypothesis Stem Cell Research Embryonic stem cell Cell biology RUNX2 human embryonic palatal mesenchyme stem cell medicine.anatomical_structure Musculoskeletal ALP Epigenetics Biochemistry and Cell Biology Stem cell Fractal dimension |
Zdroj: | Bioinformation, vol 5, iss 7 Bioinformation |
ISSN: | 0973-2063 0973-8894 |
DOI: | 10.6026/97320630005278 |
Popis: | Mesenchymal stem cells (MSCs) provide an appropriate model to study epigenetic changes during osteogenesis and bone regeneration due to their differentiation potential. Since there are no unique markers for MSCs, methods of identification are limited. The complex morphology of human embryonic palatal mesenchyme stem cell (HEPM) requires analysis of fractal dimensions to provide an objective quantification of self-similarity, a statistical transformation of cellular shape and border complexity. We propose the hypothesis of a study to compare and contrast sequential steps of osteogenic differentiation in HEPMs both phenotypically using immunocytochemistry, and morphometrically using fractal analysis from undifferentiated passage 1 (P1) to passage 7 (P7) cells. The proof-of-concept is provided by results we present here that identify and compare the modulation of expression of certain epigenetic biomarkers (alkaline phosphatase, ALP; stromal interaction molecule-1, STRO-1; runt-related transcription factor-2, RUNX2), which are established markers of osteogenesis in bone marrow studies, of osteoblastic/skeletal morphogenesis, and of osteoblast maturation. We show that Osteoinductive medium (OIM) modulates the rate of differentiation of HEPM into Run-2+ cells, the most differentiated subpopulation, followed by ALP+ and STRO-1+ cells. Taken together, our phenotypical and morphometric data demonstrate the feasibility of using HEPM to assess osteogenic differentiation from an early undifferentiated to a differentiated stage. This research model may lay the foundation for future studies aimed at characterizing the epigenetic characteristics of osteoimmunological disorders and dysfunctions (e.g., osteoarthritis, temporomandibular joint disorders), so that proteomic profiling can aid the diagnosis and monitor the prognosis of these and other osteoimmunopathologies. |
Databáze: | OpenAIRE |
Externí odkaz: |