Escaping a neighborhood along a prescribed sequence in Lie groups and Banach algebras

Autor: Sophie Grivaux, Catalin Badea, Vincent Devinck
Přispěvatelé: Laboratoire Paul Painlevé - UMR 8524 (LPP), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Laboratoire de Mathématiques de Lens (LML), Université d'Artois (UA), Centre National de la Recherche Scientifique (CNRS), Laboratoire Paul Painlevé (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE40-0021,FRONT2017,Frontières de la théorie des opérateurs(2017)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Canadian Mathematical Bulletin
Canadian Mathematical Bulletin, 2020, 63 (3), pp.484-505
Canadian Mathematical Bulletin, 2020, 63 (3), pp.484-505. ⟨10.4153/S0008439519000560⟩
ISSN: 0008-4395
1496-4287
DOI: 10.4153/S0008439519000560⟩
Popis: It is shown that Jamison sequences, introduced in 2007 by Badea and Grivaux ([C. Badea and S. Grivaux, Unimodular eigenvalues, uniformly distributed sequences and linear dynamics, Adv. Math. 211 (2007), no. 2, 766--793]), arise naturally in the study of topological groups with no small subgroups, of Banach or normed algebra elements whose powers are close to identity along subsequences, and in characterizations of (self-adjoint) positive operators by the accretiveness of some of their powers. The common core of these results is a description of those sequences for which non-identity elements in Lie groups or normed algebras escape an arbitrary small neighborhood of the identity in a number of steps belonging to the given sequence. Several spectral characterizations of Jamison sequences are given and other related results are proved.
Comment: 25 pages; suggestions by two referees have been taken into account
Databáze: OpenAIRE