Impact of halogen chemistry on summertime air quality in coastal and continental Europe: application of the CMAQ model and implications for regulation
Autor: | Carlos A. Cuevas, Golam Sarwar, Rafael Borge, Brett Gantt, David de la Paz, Jessica Domingo, Qinyi Li, Alfonso Saiz-Lopez |
---|---|
Přispěvatelé: | European Commission |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Atmospheric Science
010504 meteorology & atmospheric sciences Air pollution chemistry.chemical_element 010501 environmental sciences medicine.disease_cause 01 natural sciences Article lcsh:Chemistry Abundance (ecology) 11. Sustainability medicine Chlorine media_common.cataloged_instance European union Air quality index 0105 earth and related environmental sciences media_common Chemistry Vegetation lcsh:QC1-999 lcsh:QD1-999 13. Climate action Environmental chemistry Halogen lcsh:Physics CMAQ |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname Atmospheric Chemistry and Physics Atmospheric chemistry and physics Atmospheric Chemistry and Physics, Vol 19, Pp 15321-15337 (2019) |
ISSN: | 1680-7324 |
Popis: | 17 pags., 8 figs., 3 tabs. Halogen (Cl, Br, and I) chemistry has been reported to influence the formation of secondary air pollutants. Previous studies mostly focused on the impact of chlorine species on air quality over large spatial scales. Very little attention has been paid to the effect of the combined halogen chemistry on air quality over Europe and its implications for control policy. In the present study, we apply a widely used regional model, the Community Multiscale Air Quality Modeling System (CMAQ), incorporated with the latest halogen sources and chemistry, to simulate the abundance of halogen species over Europe and to examine the role of halogens in the formation of secondary air pollution. The results suggest that the CMAQ model is able to reproduce the level of O3, NO2, and halogen species over Europe. Chlorine chemistry slightly increases the levels of OH, HO2, NO3, O3, and NO2 and substantially enhances the level of the Cl radical. Combined halogen chemistry induces complex effects on OH (ranging from −0.023 to 0.030 pptv) and HO2 (in the range of −3.7 to 0.73 pptv), significantly reduces the concentrations of NO3 (as much as 20 pptv) and O3 (as much as 10 ppbv), and decreases NO2 in highly polluted regions (as much as 1.7 ppbv); it increases NO2 (up to 0.20 ppbv) in other areas. The maximum effects of halogen chemistry occur over oceanic and coastal regions, but some noticeable impacts also occur over continental Europe. Halogen chemistry affects the number of days exceeding the European Union target threshold for the protection of human beings and vegetation from ambient O3. In light of the significant impact of halogen chemistry on air quality, we recommend that halogen chemistry be considered for inclusion in air quality policy assessments, particularly in coastal cities. This research has been supported by the European Commission, H2020 Research Infrastructures (CLIMAHAL (grant no. 726349)) |
Databáze: | OpenAIRE |
Externí odkaz: |