Phylogenetic Illustration of Eisenia fetida Associated Vermi-bacteria Involved in Heavy Metals Remediation and Retaining Plant Growth Promoting Traits
Autor: | Anum Naseer, Saiqa Andleeb, Abdul Basit, Wajid Arshad Abbasi, Samina Ejaz, Shaukat Ali, Nazish Mazhar Ali |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Oleo Science. 71:1241-1252 |
ISSN: | 1347-3352 1345-8957 |
DOI: | 10.5650/jos.ess21366 |
Popis: | Heavy metals contamination in the soil is a major threat to wildlife, the environment, and human health. Microbial remediation is an emerging and promising technology to reduce heavy metals toxicity. Therefore, the present research aimed to isolate and to identify the heavy metals tolerated bacteria from the Eisenia fetida for the first time, and to screen the bacto-remediation capabilities and plant growth promoting traits of vermi-bacterial isolates. Vermi-bacteria was isolated from the gut of E. fetida, identified through staining, culturing, biochemical tests, and ribotyping. Plant growth-promoting traits were also evaluated. Phylogenetic results revealed that isolated Vermi-bacterial strains showed resemblance with Bacillus thuringiensis, Bacillus aryabhattai, Staphylococcus hominis, Bacillus toyonensis, Bacillus cabrialesii, Bacillus tequilensis, Bacillus mojavensis, Bacillus amyloliquefaciens, Bacillus toyonensis, Bacillus anthracis, and Bacillus paranthracis. All identified Vermi-bacterial species are Gram-positive (rod and cocci) in nature, not only indicated the efficient biosorption of lead, cadmium, and chromium but also produce all plant growth stimulating traits such as indole acetic acid (IAA), amylase, protease, lipase, hydrogen cyanide, ammonia, and siderophore production, and also act as a phosphate solubilizers. Bacillus anthracis showed significant production of siderophore (33.0±0.0 mm), phosphate solubilizing (33.0±0.0 mm), proteolytic (15.0±0.0 mm), and lipolytic activities (20.0±0.0 mm) compared to other vermi-bacterial isolates. Bioaccumulation factor results revealed that Bacillus anthracis showed more accumulation of Cd (12.00±0.01 ppm), Cr (5.38±0.01 ppm), and Pb (4.38±0.01 ppm). Therefore, the current findings showed that all identified vermi-bacteria could be used as potential bactoremediation agents in heavy metals polluted environments and could be used as microbial biofertilizers to enhance crop production in a polluted area. |
Databáze: | OpenAIRE |
Externí odkaz: |