Finite-time Blowup for some Nonlinear Complex Ginzburg–Landau Equations

Autor: Thierry Cazenave, Seifeddine Snoussi
Přispěvatelé: Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut préparatoire aux études scientifiques et techniques [La Marsa] (IPEST)
Rok vydání: 2019
Předmět:
Zdroj: Partial Differential Equations Arising from Physics and Geometry
Partial Differential Equations Arising from Physics and Geometry, 450, Cambridge University Press, 2019, London Mathematical Society Lecture Note Series, 9781108367639. ⟨10.1017/9781108367639.004⟩
DOI: 10.1017/9781108367639.004
Popis: International audience; In this article, we review finite-time blowup criteria for the family of complex Ginzburg-Landau equations $u_t = e^{ i\theta } [\Delta u + |u|^\alpha u] + \gamma u$ on ${\mathbb R}^N $, where $0 \le \theta \le \frac {\pi } {2}$, $\alpha >0$ and $\gamma \in {\mathbb R} $. We study in particular the effect of the parameters $\theta $ and $\gamma $, and the dependence of the blowup time on these parameters.
Databáze: OpenAIRE