LR-NIMBUS : an interactive algorithm for uncertain multiobjective optimization with lightly robust efficient solutions
Autor: | Javad Koushki, Kaisa Miettinen, Majid Soleimani-damaneh |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Control and Optimization
Applied Mathematics päätöksenteko light robust efficiency robust optimization matemaattiset menetelmät portfoliot Management Science and Operations Research interactive methods arvopaperisalkut skenaariot epävarmuus monitavoiteoptimointi Computer Science Applications uncertain multiple criteria optimization menetelmät optimointi algoritmit interaktiivisuus Business Management and Accounting (miscellaneous) portfolio selection |
Popis: | In this paper, we develop an interactive algorithm to support a decision maker to find a most preferred lightly robust efficient solution when solving uncertain multiobjective optimization problems. It extends the interactive NIMBUS method. The main idea underlying the designed algorithm, called LR-NIMBUS, is to ask the decision maker for a most acceptable (typical) scenario, find an efficient solution for this scenario satisfying the decision maker, and then apply the derived efficient solution to generate a lightly robust efficient solution. The preferences of the decision maker are incorporated through classifying the objective functions. A lightly robust efficient solution is generated by solving an augmented weighted achievement scalarizing function. We establish the tractability of the algorithm for important classes of objective functions and uncertainty sets. As an illustrative example, we model and solve a robust optimization problem in stock investment (portfolio selection). peerReviewed |
Databáze: | OpenAIRE |
Externí odkaz: |