Multi-stage adaptive enrichment trial design with subgroup estimation
Autor: | Neha Joshi, Crystal T. Nguyen, Anastasia Ivanova |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pharmacology
Statistics and Probability Estimation Clinical Trials as Topic Function (mathematics) Article Regression Normal-inverse Gaussian distribution Multi stage Tree (data structure) Research Design Sample size determination Sample Size Statistics Humans Pharmacology (medical) Treatment effect Mathematics |
Zdroj: | J Biopharm Stat |
ISSN: | 1520-5711 1054-3406 |
DOI: | 10.1080/10543406.2020.1832109 |
Popis: | We consider the problem of estimating the best subgroup and testing for treatment effect in a clinical trial. We define the best subgroup as the subgroup that maximizes a utility function that reflects the trade-off between the subgroup size and the treatment effect. For moderate effect sizes and sample sizes, simpler methods for subgroup estimation worked better than more complex tree- based regression approaches. We propose a three-stage design with a weighted inverse normal combination test to test the hypothesis of no treatment effect across the three stages. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |