Ergodic Poisson splittings

Autor: Emmanuel Roy, Thierry de la Rue, Elise Janvresse
Přispěvatelé: Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 (LAMFA), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Laboratoire de Mathématiques Raphaël Salem (LMRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), GdR GeoSto
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Ann. Probab. 48, no. 3 (2020), 1266-1285
Annals of Probability
Annals of Probability, Institute of Mathematical Statistics, 2020, 48 (3), pp.1266-1285. ⟨10.1214/19-AOP1390⟩
ISSN: 0091-1798
2168-894X
DOI: 10.1214/19-AOP1390⟩
Popis: International audience; In this paper we study splittings of a Poisson point process which are equivariant under a conservative transformation. We show that, if the Cartesian powers of this transformation are all ergodic, the only ergodic splitting is the obvious one, that is, a collection of independent Poisson processes. We apply this result to the case of a marked Poisson process: under the same hypothesis, the marks are necessarily independent of the point process and i.i.d. Under additional assumptions on the transformation, a further application is derived, giving a full description of the structure of a random measure invariant under the action of the transformation.
Databáze: OpenAIRE