New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators
Autor: | Ky, Luong Dang |
---|---|
Přispěvatelé: | Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Ky, Luong Dang |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Mathematics::Functional Analysis
Hardy spaces Hardy-Orlicz spaces [MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] Mathematics::Classical Analysis and ODEs BMO-multipliers [MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM] [MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] [MATH.MATH-CA] Mathematics [math]/Classical Analysis and ODEs [math.CA] Musielak-Orlicz functions quasi-Banach spaces Functional Analysis (math.FA) Mathematics - Functional Analysis atomic decompositions [MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] Muckenhoupt weights Mathematics - Classical Analysis and ODEs Classical Analysis and ODEs (math.CA) FOS: Mathematics sublinear operators 42B35 (46E30 42B15 42B30) |
Zdroj: | Integral Equations and Operator Theory Integral Equations and Operator Theory, Springer Verlag, 2014, 36 p |
ISSN: | 0378-620X 1420-8989 |
Popis: | We introduce a new class of Hardy spaces $H^{\varphi(\cdot,\cdot)}(\mathbb R^n)$, called Hardy spaces of Musielak-Orlicz type, which generalize the Hardy-Orlicz spaces of Janson and the weighted Hardy spaces of Garc\'ia-Cuerva, Str\"omberg, and Torchinsky. Here, $\varphi: \mathbb R^n\times [0,\infty)\to [0,\infty)$ is a function such that $\varphi(x,\cdot)$ is an Orlicz function and $\varphi(\cdot,t)$ is a Muckenhoupt $A_\infty$ weight. A function $f$ belongs to $H^{\varphi(\cdot,\cdot)}(\mathbb R^n)$ if and only if its maximal function $f^*$ is so that $x\mapsto \varphi(x,|f^*(x)|)$ is integrable. Such a space arises naturally for instance in the description of the product of functions in $H^1(\mathbb R^n)$ and $BMO(\mathbb R^n)$ respectively (see \cite{BGK}). We characterize these spaces via the grand maximal function and establish their atomic decomposition. We characterize also their dual spaces. The class of pointwise multipliers for $BMO(\mathbb R^n)$ characterized by Nakai and Yabuta can be seen as the dual of $L^1(\mathbb R^n)+ H^{\rm log}(\mathbb R^n)$ where $ H^{\rm log}(\mathbb R^n)$ is the Hardy space of Musielak-Orlicz type related to the Musielak-Orlicz function $\theta(x,t)=\displaystyle\frac{t}{\log(e+|x|)+ \log(e+t)}$. Furthermore, under additional assumption on $\varphi(\cdot,\cdot)$ we prove that if $T$ is a sublinear operator and maps all atoms into uniformly bounded elements of a quasi-Banach space $\mathcal B$, then $T$ uniquely extends to a bounded sublinear operator from $H^{\varphi(\cdot,\cdot)}(\mathbb R^n)$ to $\mathcal B$. These results are new even for the classical Hardy-Orlicz spaces on $\mathbb R^n$. Comment: Integral Equations and Operator Theory (to appear) |
Databáze: | OpenAIRE |
Externí odkaz: |