On the edge capacitated Steiner tree problem
Autor: | Marie-Christine Costa, Cédric Bentz, Alain Hertz |
---|---|
Přispěvatelé: | CEDRIC. Optimisation Combinatoire (CEDRIC - OC), Centre d'études et de recherche en informatique et communications (CEDRIC), Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM), Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM), Optimisation et commande (OC), Unité de Mathématiques Appliquées (UMA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris), Groupe d’études et de recherche en analyse des décisions (GERAD), Université du Québec à Montréal = University of Québec in Montréal (UQAM)-HEC Montréal (HEC Montréal)-McGill University = Université McGill [Montréal, Canada]-École Polytechnique de Montréal (EPM), PGMO project. |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
FOS: Computer and information sciences
vertex disjoint paths Computational complexity theory Discrete Mathematics (cs.DM) Open problem 0211 other engineering and technologies approximation 0102 computer and information sciences 02 engineering and technology 01 natural sciences Steiner tree problem Theoretical Computer Science Combinatorics symbols.namesake Steiner rooted tree approximation algorithms compelxity Mathematics computational complexity 021103 operations research Graph optimization Applied Mathematics Steiner trees Approximation algorithm [INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] Graph capacity constraints Open case Computational Theory and Mathematics 010201 computation theory & mathematics symbols Computer Science - Discrete Mathematics MathematicsofComputing_DISCRETEMATHEMATICS |
Zdroj: | Discrete Optimization Discrete Optimization, Elsevier, 2020, 38, pp.100607. ⟨10.1016/j.disopt.2020.100607⟩ |
ISSN: | 1572-5286 1873-636X |
DOI: | 10.1016/j.disopt.2020.100607⟩ |
Popis: | Given a graph G = ( V , E ) with a root r ∈ V , positive capacities { c ( e ) | e ∈ E } , and non-negative lengths { l ( e ) | e ∈ E } , the minimum-length (rooted) edge capacitated Steiner tree problem is to find a tree in G of minimum total length, rooted at r , spanning a given subset T ⊂ V of vertices, and such that, for each e ∈ E , there are at most c ( e ) paths, linking r to vertices in T , that contain e . We study the complexity and approximability of the problem, considering several relevant parameters such as the number of terminals, the edge lengths and the minimum and maximum edge capacities. For all but one combinations of assumptions regarding these parameters, we settle the question, giving a complete characterization that separates tractable cases from hard ones. The only remaining open case is proved to be equivalent to a long-standing open problem. We also prove close relations between our problem and classic Steiner tree as well as vertex-disjoint paths problems. |
Databáze: | OpenAIRE |
Externí odkaz: |