Phasic Triplet Markov Chains

Autor: Amar Aissani, Emmanuel Monfrini, Mohamed El Yazid Boudaren, Wojciech Pieczynski
Přispěvatelé: Communications, Images et Traitement de l'Information (CITI), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Ecole Militaire Polytechnique [Alger] (EMP), Ministère de l'Enseignement Supérieur et de la Recherche Scientifique [Algérie] (MESRS)-Ministère de la Défense Nationale [Algérie], Centre National de la Recherche Scientifique (CNRS), Université des Sciences et de la Technologie Houari Boumediene [Alger] (USTHB)
Rok vydání: 2015
Předmět:
Markov kernel
Computer science
Bayesian probability
Markov process
Markov model
Viterbi algorithm
Continuous-time Markov chain
symbols.namesake
Artificial Intelligence
Markov renewal process
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
Markov algorithm
Biology and genetics
Maximum a posteriori estimation
Bayesian restoration
Additive Markov chain
Triplet Markov chains
Hidden Markov model
Maximal posterior mode
Markov chain mixing time
Markov chain
business.industry
Applied Mathematics
Maximum-entropy Markov model
Variable-order Markov model
Markov processes
Partially observable Markov decision process
Statistical model
Pattern recognition
Maximum a posteriori
Hidden Markov chains
Computational Theory and Mathematics
Balance equation
symbols
Markov property
Examples of Markov chains
Computer Vision and Pattern Recognition
Artificial intelligence
Hidden semi-Markov model
business
Algorithm
Software
Zdroj: IEEE Transactions on Pattern Analysis and Machine Intelligence
IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2014, 36 (11), pp.2310-2316. ⟨10.1109/TPAMI.2014.2327974⟩
ISSN: 1939-3539
0162-8828
DOI: 10.1109/TPAMI.2014.2327974⟩
Popis: International audience; Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain HMCs to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data
Databáze: OpenAIRE