Solving a Modified Syndrome Decoding Problem using Integer Programming
Autor: | Vlad-Florin Dragoi, Brice Colombier, Pierre-Louis Cayrel, Sorin Hoara, Dominic Bucerzan |
---|---|
Přispěvatelé: | Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Departement of Mathematics and Computer Science, Universitatea 'Aurel Vlaicu' din Arad |
Rok vydání: | 2020 |
Předmět: |
Optimization problem
Computer Networks and Communications Computer science Data_CODINGANDINFORMATIONTHEORY Integer vector Computer Science Applications [INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] Finite field Computational Theory and Mathematics Simplex algorithm Multiplication Linear optimization problem Integer programming Algorithm ComputingMilieux_MISCELLANEOUS Decoding methods Computer Science::Information Theory |
Zdroj: | International Journal of Computers, Communications and Control International Journal of Computers, Communications and Control, Agora University of Oradea, 2020, 15 (5), ⟨10.15837/ijccc.2020.5.3920⟩ |
ISSN: | 1841-9844 1841-9836 |
DOI: | 10.15837/ijccc.2020.5.3920 |
Popis: | In this article, we model a variant of the well-known syndrome decoding problem as a linear optimization problem. Most common algorithms used for solving optimization problems, e.g. the simplex algorithm, fail to find a valid solution for the syndrome decoding problem over a finite field. However, our simulations prove that a slightly modified version of the syndrome decoding problem can be solved by the simplex algorithm. More precisely, the algorithm returns a valid error vector when the syndrome vector is an integer vector, i.e.,the matrix-vector multiplication, is realized over Z, instead of Fq. |
Databáze: | OpenAIRE |
Externí odkaz: |