Sequências espectrais e aplicações para módulos

Autor: Wellington Marques de Souza
Přispěvatelé: Victor Hugo Jorge Pérez, Rosali Brusamarello, Daniel Levcovitz, Humberto Luiz Talpo
Rok vydání: 2018
Zdroj: Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
DOI: 10.11606/d.55.2017.tde-29032017-085640
Popis: As sequências espectrais foram criadas por Jean Leray num campo de concentração durante a Segunda Guerra Mundial motivado por problemas inerentes à Topologia Algébrica. Num primeiro momento, surge como uma ferramenta para auxiliar no cálculo da cohomologia de um feixe. Porém, Jean-Louis Koszul apresenta uma formulação puramente algébrica para tais sequencias, que consiste basicamente no cálculo da homologia de um complexo total associado a um complexo duplo. Concentraremos nosso trabalho nas definições e resultados que nos permitem demonstrar os seguintes resultados conhecidos da Álgebra usando sequências espectrais: o Lema dos Cinco, o Lema da Serpente, Balanceamento para o Funtor Tor, Mudança de Base para o Funtor Tor e o Teorema dos Coeficientes Universais. Apresentamos, ao final do trabalho, uma generalização que nos permite entender melhor os funtores derivados à esquerda: as Sequências Espectrais de Grothendieck. Spectral sequences were created by Jean Leray in a concentration camp during World War II motivated by problems of Algebraic Topology. At first, it appears as a tool to assist in calculating the cohomology of a sheaf. However, Jean-Louis Koszul presents a purely algebraic formulation for these sequences, which basically consists in calculating a total of homology complex associated with a double complex. We will focus our work on the definitions and results that allow us to demonstrate known results of algebra using spectral sequences: The Five Lemma, The Snake Lemma, Balancing of functor Tor, Base Change for Tor and Universal Coefficient Theorem. We present, at the end of this work, a generalization that allows us to better understand the left derivative functors: the Spectral Sequence of Grothendieck.
Databáze: OpenAIRE