Post-Quench Evolution of Complexity and Entanglement in a Topological System
Autor: | Nathan Moynihan, Arpan Bhattacharyya, Eugene H. Kim, S. Shajidul Haque, Tibra Ali |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Quantum phase transition
Physics High Energy Physics - Theory Nuclear and High Energy Physics Quantum Physics Statistical Mechanics (cond-mat.stat-mech) Strongly Correlated Electrons (cond-mat.str-el) 010308 nuclear & particles physics Information processing FOS: Physical sciences Quantum entanglement Topology 01 natural sciences lcsh:QC1-999 Condensed Matter - Strongly Correlated Electrons High Energy Physics - Theory (hep-th) 0103 physical sciences Topological order 010306 general physics Quantum Physics (quant-ph) Entropy (arrow of time) lcsh:Physics Condensed Matter - Statistical Mechanics |
Zdroj: | Physics Letters Physics Letters B, Vol 811, Iss, Pp 135919-(2020) |
Popis: | We investigate the evolution of complexity and entanglement following a quench in a one-dimensional topological system, namely the Su-Schrieffer-Heeger model. We demonstrate that complexity can detect quantum phase transitions and shows signatures of revivals; this observation provides a practical advantage in information processing. We also show that the complexity saturates much faster than the entanglement entropy in this system, and we provide a physical argument for this. Finally, we demonstrate that complexity is a less sensitive probe of topological order, compared with measures of entanglement. 24 pages, 6 figures, title and abstract slightly modified, updated version to appear in Physics Letters B |
Databáze: | OpenAIRE |
Externí odkaz: |