Total Stem Biomass Estimation Using Sentinel-1 and -2 Data in a Dense Coniferous Forest of Complex Structure and Terrain

Autor: Nikos Georgopoulos, Christos Sotiropoulos, Alexandra Stefanidou, Ioannis Z. Gitas
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Forests; Volume 13; Issue 12; Pages: 2157
ISSN: 1999-4907
DOI: 10.3390/f13122157
Popis: Accurate above-ground biomass (AGB) estimation across multiple spatial and temporal scales is essential for mitigating climate change and optimizing forest management strategies. The aim of the present study was to investigate the potential of Sentinel optical and Synthetic Aperture Radar (SAR) data in reliably estimating the plot-level total stem biomass (TSB), which constitutes the dominant material among the different tree components of AGB (stem, branches, and leaves). The study area was located in a dense coniferous forest characterized by an uneven-aged structure and intense topography. A random forest (RF) regression analysis was performed to develop TSB predictive models using Sentinel-1 and -2 images in an individual and combined manner. Consequently, three RF models were produced and evaluated for their predictive performance through the k-fold cross-validation (CV) method. The results showcased that the individual use of Sentinel-1 contributed to the production of the most accurate plot-level TSB estimates (i.e., coefficient of determination-R2 = 0.74, relative mean square error (RMSE) = 1.76 Mg/1000 m2, mean absolute error (MAE) = 1.48 Mg/1000 m2), compared to the use of Sentinel-2 data individually and the Sentinel-1 and -2 combination. In fact, the synergistic use of optical and SAR data led to the generation of an RF model that only marginally underperformed the SAR model (R2 = 0.73 and R2 = 0.72, respectively).
Databáze: OpenAIRE