Entanglement in fermionic chains with finite-range coupling and broken symmetries
Autor: | Amilcar R. de Queiroz, Fernando Falceto, Filiberto Ares, J. G. Esteve |
---|---|
Rok vydání: | 2015 |
Předmět: |
High Energy Physics - Theory
Physics Quantum phase transition Quantum Physics Logarithm FOS: Physical sciences Mathematical Physics (math-ph) Quantum entanglement Atomic and Molecular Physics and Optics Toeplitz matrix Renormalization Reflection symmetry High Energy Physics - Theory (hep-th) Quantum mechanics Pairing Entropy (information theory) Quantum Physics (quant-ph) Mathematical Physics |
Zdroj: | Zaguán. Repositorio Digital de la Universidad de Zaragoza instname |
ISSN: | 1094-1622 1050-2947 |
DOI: | 10.1103/physreva.92.042334 |
Popis: | We obtain a formula for the determinant of a block Toeplitz matrix associated with a quadratic fermionic chain with complex coupling. Such couplings break reflection symmetry and/or charge conjugation symmetry. We then apply this formula to compute the Renyi entropy of a partial observation to a subsystem consisting of $X$ contiguous sites in the limit of large $X$. The present work generalizes similar results due to Its, Jin, Korepin and Its, Mezzadri, Mo. A striking new feature of our formula for the entanglement entropy is the appearance of a term scaling with the logarithm of the size of $X$. This logarithmic behaviour originates from certain discontinuities in the symbol of the block Toeplitz matrix. Equipped with this formula we analyse the entanglement entropy of a Dzyaloshinski-Moriya spin chain and a Kitaev fermionic chain with long range pairing. 27 pages, 5 figures |
Databáze: | OpenAIRE |
Externí odkaz: |