Entanglement in fermionic chains with finite-range coupling and broken symmetries

Autor: Amilcar R. de Queiroz, Fernando Falceto, Filiberto Ares, J. G. Esteve
Rok vydání: 2015
Předmět:
Zdroj: Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
ISSN: 1094-1622
1050-2947
DOI: 10.1103/physreva.92.042334
Popis: We obtain a formula for the determinant of a block Toeplitz matrix associated with a quadratic fermionic chain with complex coupling. Such couplings break reflection symmetry and/or charge conjugation symmetry. We then apply this formula to compute the Renyi entropy of a partial observation to a subsystem consisting of $X$ contiguous sites in the limit of large $X$. The present work generalizes similar results due to Its, Jin, Korepin and Its, Mezzadri, Mo. A striking new feature of our formula for the entanglement entropy is the appearance of a term scaling with the logarithm of the size of $X$. This logarithmic behaviour originates from certain discontinuities in the symbol of the block Toeplitz matrix. Equipped with this formula we analyse the entanglement entropy of a Dzyaloshinski-Moriya spin chain and a Kitaev fermionic chain with long range pairing.
27 pages, 5 figures
Databáze: OpenAIRE