Coherent systems on curves of compact type
Autor: | Sonia Brivio, Filippo F. Favale |
---|---|
Přispěvatelé: | Brivio, S, Favale, F |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
Span (category theory) 010102 general mathematics General Physics and Astronomy Rank (differential topology) Type (model theory) 01 natural sciences Moduli space Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry Dimension (vector space) Coherent systems Stability Curves of compact type Nodal curves 0103 physical sciences FOS: Mathematics Sheaf 010307 mathematical physics Geometry and Topology 14H60 14D20 0101 mathematics Algebraic Geometry (math.AG) Mathematical Physics Subspace topology Irreducible component Mathematics |
Popis: | Let $C$ be a polarized nodal curve of compact type. In this paper we study coherent systems $(E,V)$ on $C$ given by a depth one sheaf $E$ having rank $r$ on each irreducible component of $C$ and a subspace $V \subset H^0(E)$ of dimension $k$. Moduli spaces of stable coherent systems have been introduced by King and Newstead and depend on a real parameter $\alpha$. We show that when $k \geq r$, these moduli spaces coincide for $\alpha$ big enough. Then we deal with the case $k=r+1$: when the degrees of the restrictions of $E$ are big enough we are able to describe an irreducible component of this moduli space by using the dual span construction. Comment: 26 pages |
Databáze: | OpenAIRE |
Externí odkaz: |