Link key candidate extraction with relational concept analysis
Autor: | Jérémy Vizzini, Amedeo Napoli, Jérôme David, Manuel Atencia, Jérôme Euzenat |
---|---|
Přispěvatelé: | Laboratoire d'Informatique de Grenoble (LIG), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Knowledge representation, reasonning (ORPAILLEUR), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE23-0007,ELKER,Étendre les clés de liage: extraction et raisonnement(2017), Evolution de la connaissance (MOEX ), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]) |
Rok vydání: | 2020 |
Předmět: |
Link key
Formal Concept Analysis media_common.quotation_subject Interoperability 0211 other engineering and technologies Context (language use) 0102 computer and information sciences 02 engineering and technology 01 natural sciences [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] Formal concept analysis Discrete Mathematics and Combinatorics RDF Link (knot theory) ComputingMilieux_MISCELLANEOUS Data interlinking Mathematics media_common Information retrieval Linked data Applied Mathematics Scale (chemistry) [INFO.INFO-WB]Computer Science [cs]/Web Resource Description Framework 021107 urban & regional planning computer.file_format Interdependence 010201 computation theory & mathematics Relational Concept Analysis computer |
Zdroj: | Discrete Applied Mathematics Discrete Applied Mathematics, 2020, 273, pp.2-20. ⟨10.1016/j.dam.2019.02.012⟩ Discrete Applied Mathematics, Elsevier, 2020, 273, pp.2-20. ⟨10.1016/j.dam.2019.02.012⟩ |
ISSN: | 0166-218X |
DOI: | 10.1016/j.dam.2019.02.012 |
Popis: | Linked data aims at publishing data expressed in RDF (Resource Description Framework) at the scale of the worldwide web. These datasets interoperate by publishing links which identify individuals across heterogeneous datasets. Such links may be found by using a generalisation of keys in databases, called link keys, which apply across datasets. They specify the pairs of properties to compare for linking individuals belonging to different classes of the datasets. Here, we show how to recast the proposed link key extraction techniques for RDF datasets in the framework of formal concept analysis. We define a formal context, where objects are pairs of resources and attributes are pairs of properties, and show that formal concepts correspond to link key candidates. We extend this characterisation to the full RDF model including non functional properties and interdependent link keys. We show how to use relational concept analysis for dealing with cyclic dependencies across classes and hence link keys. Finally, we discuss an implementation of this framework. |
Databáze: | OpenAIRE |
Externí odkaz: |