The TRPM7 channel kinase: rekindling an old flame or not?
Autor: | Federica I Wolf, Valentina Trapani |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
TRPM7
inflammation cardiovascular function Magnesium channel Physiology TRPM7 chemistry.chemical_element TRPM Cation Channels Calcium Protein Serine-Threonine Kinases Settore MED/04 - PATOLOGIA GENERALE Physiology (medical) Cations Humans cardiovascular function Vascular inflammation Protein-Serine-Threonine Kinases Vascular Pathophysiology Kinase Original Articles Fibrosis Cell biology Cardiac hypertrophy chemistry inflammation Channel (broadcasting) Cardiology and Cardiovascular Medicine |
Zdroj: | Cardiovascular Research |
Popis: | Aims Transient Receptor Potential Melastatin 7 (TRPM7) cation channel is a chanzyme (channel + kinase) that influences cellular Mg2+ homeostasis and vascular signalling. However, the pathophysiological significance of TRPM7 in the cardiovascular system is unclear. The aim of this study was to investigate the role of this chanzyme in the cardiovascular system focusing on inflammation and fibrosis. Methods and results TRPM7-deficient mice with deletion of the kinase domain (TRPM7+/Δkinase) were studied and molecular mechanisms investigated in TRPM7+/Δkinase bone marrow-derived macrophages (BMDM) and co-culture systems with cardiac fibroblasts. TRPM7-deficient mice had significant cardiac hypertrophy, fibrosis, and inflammation. Cardiac collagen and fibronectin content, expression of pro-inflammatory mediators (SMAD3, TGFβ) and cytokines [interleukin (IL)-6, IL-10, IL-12, tumour necrosis factor-α] and phosphorylation of the pro-inflammatory signalling molecule Stat1, were increased in TRPM7+/Δkinase mice. These processes were associated with infiltration of inflammatory cells (F4/80+CD206+ cardiac macrophages) and increased galectin-3 expression. Cardiac [Mg2+]i, but not [Ca2+]i, was reduced in TRPM7+/Δkinase mice. Calpain, a downstream TRPM7 target, was upregulated (increased expression and activation) in TRPM7+/Δkinase hearts. Vascular functional and inflammatory responses, assessed in vivo by intra-vital microscopy, demonstrated impaired neutrophil rolling, increased neutrophil: endothelial attachment and transmigration of leucocytes in TRPM7+/Δkinase mice. TRPM7+/Δkinase BMDMs had increased levels of galectin-3, IL-10, and IL-6. In co-culture systems, TRPM7+/Δkinase macrophages increased expression of fibronectin, proliferating cell nuclear antigen, and TGFβ in cardiac fibroblasts from wild-type mice, effects ameliorated by MgCl2 treatment. Conclusions We identify a novel anti-inflammatory and anti-fibrotic role for TRPM7 and suggest that its protective effects are mediated, in part, through Mg2+-sensitive processes. Graphical Abstract Graphical Abstract |
Databáze: | OpenAIRE |
Externí odkaz: |