Products of random variables and the first digit phenomenon

Autor: Nicolas Chenavier, Dominique Schneider, Bruno Massé
Rok vydání: 2015
Předmět:
DOI: 10.48550/arxiv.1512.06049
Popis: We provide conditions on dependent and on non-stationary random variables X n ensuring that the mantissa of the sequence of products ∏ 1 n X k is almost surely distributed following Benford’s law or converges in distribution to Benford’s law. This is achieved through proving new generalizations of Levy’s and Robbins’s results on distribution modulo 1 of sums of independent random variables.
Databáze: OpenAIRE