A MINSAT Approach for Learning in Logic Domains

Autor: Klaus Truemper, Giovanni Felici
Rok vydání: 2002
Předmět:
Zdroj: INFORMS journal on computing 14 (2002): 20–36.
info:cnr-pdr/source/autori:Felici, G.; Truemper, K./titolo:A MINSAT Approach for Learning in Logic Domains/doi:/rivista:INFORMS journal on computing/anno:2002/pagina_da:20/pagina_a:36/intervallo_pagine:20–36/volume:14
ISSN: 1526-5528
1091-9856
DOI: 10.1287/ijoc.14.1.20.7709
Popis: This paper describes a method for learning logic relationships that correctly classify a given data set. The method derives from given logic data certain minimum cost satisfiability problems, solves these problems, and deduces from the solutions the desired logic relationships. Uses of the method include data mining, learning logic in expert systems, and identification of critical characteristics for recognition systems. Computational tests have proved that the method is fast and effective.
Databáze: OpenAIRE