Leveraging Web Intelligence for Information Cascade Detection in Social Streams

Autor: Fedoua Didi, Abdelatif Ennaji, Mohamed Cherif Nait-Hamoud
Přispěvatelé: Département d'informatique [Tlemcen], Université Aboubekr Belkaid - University of Belkaïd Abou Bekr [Tlemcen], Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Abdelmalek Amine, Malek Mouhoub, Otmane Ait Mohamed, Bachir Djebbar, TC 5
Rok vydání: 2018
Předmět:
Zdroj: Computational Intelligence and Its Applications ISBN: 9783319897424
CIIA
IFIP Advances in Information and Communication Technology
6th IFIP International Conference on Computational Intelligence and Its Applications (CIIA)
6th IFIP International Conference on Computational Intelligence and Its Applications (CIIA), May 2018, Oran, Algeria. pp.56-65, ⟨10.1007/978-3-319-89743-1_6⟩
DOI: 10.1007/978-3-319-89743-1_6
Popis: Part 1: Data Mining and Information Retrieval; International audience; In this paper, we present an approach for investigating information cascades in social and collaborative networks. The proposed approach seeks to improve methods limited to the detection of paths through which merely exact content-tokens are propagated. For this sake, we adopt to leverage web intelligence to the purpose of discovering paths that convey exact content-tokens cascades, as well as paths that convey concepts or topics related to these content-tokens. Indeed, we mine sequence of actors involved in cascades of keywords and topics extracted from their posts, using simple to use restful APIs available on the web. For the evaluation of the approach, we conduct experiments based on assimilating a scientific collaborative network to a social network. Our findings reveal the detection of missed information when using merely exact content propagation. Moreover, we noted that the vocabulary of actors is preserved mostly in short cascades, where topics become a better alternative in long cascades.
Databáze: OpenAIRE