Firing Properties and Electrotonic Structure ofXenopusLarval Spinal Neurons

Autor: L. E. Moore, Benoit Saint Mleux
Rok vydání: 2000
Předmět:
Zdroj: Journal of Neurophysiology. 83:1366-1380
ISSN: 1522-1598
0022-3077
DOI: 10.1152/jn.2000.83.3.1366
Popis: Whole cell voltage- and current-clamp measurements were done on intact Xenopus laevis larval spinal neurons at developmental stages 42–47. Firing patterns and electrotonic properties of putative interneurons from the dorsal and ventral medial regions of the spinal cord at myotome levels 4–6 were measured in isolated spinal cord preparations. Passive electrotonic parameters were determined with internal cesium sulfate solutions as well as in the presence of active potassium conductances. Step-clamp stimuli were combined with white-noise frequency domain measurements to determine both linear and nonlinear responses at different membrane potential levels. Comparison of analytic and compartmental dendritic models provided a way to determine the number of compartments needed to describe the dendritic structure. The electrotonic structure of putative interneurons was correlated with their firing behavior such that highly accommodating neurons (Type B) had relatively larger dendritic areas and lower electrotonic lengths compared with neurons that showed sustained action potential firing in response to a constant current (Type A). Type A neurons had a wide range of dendritic areas and potassium conductances that were activated at membrane potentials more negative than observed in Type B neurons. The differences in the potassium conductances were in part responsible for a much greater rectification in the steady-state current voltage ( I-V curve) of the strongly accommodating neurons compared with repetitively firing cells. The average values of the passive electrotonic parameters found for Rall Type A and B neurons were csoma= 3.3 and 2.6 pF, gsoma= 187 and 38 pS, L = 0.36 and 0.21, and A = 3.3 and 6.5 for soma capacitance, soma conductance, electrotonic length, and the ratio of the dendritic to somatic areas, respectively. Thus these experiments suggest that there is a correlation between the electrotonic structure and the excitability properties elicited from the somatic region.
Databáze: OpenAIRE