Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing
Autor: | Nicolas Minc, Gaëlle Letort, Laras Pitayu, Julie C. Canman, Benjamin Lacroix, Anne Marie Ladouceur, Marine Stefanutti, Paul S. Maddox, Amy Shaub Maddox, François Nédélec, Julien Dumont, Gilliane Maton, Jérémy Sallé |
---|---|
Přispěvatelé: | Letort, Gaëlle [0000-0002-5866-0322], Apollo - University of Cambridge Repository, Institut Jacques Monod (IJM (UMR_7592)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Cancer et génome: Bioinformatique, biostatistiques et épidémiologie d'un système complexe, MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Biology [Chapel Hill, NC, USA], University of North Carolina [Chapel Hill] (UNC), University of North Carolina System (UNC)-University of North Carolina System (UNC), Department of Pathology and Cell Biology [New York, NY, USA], Columbia University Irving Medical Center (CUIMC), European Molecular Biology Laboratory [Heidelberg] (EMBL), B.L. was originally supported by a post-doctoral fellowship from the Fondation pour la Recherche Médicale (FRM ARF20140129055). This work was supported by CNRS and University Paris Diderot and by grants from the Agence Nationale pour la Recherche (ANR-16-CE13-0020-01), the Mairie de Paris (Emergence) and the Fondation pour la Recherche Médicale (FRM DEQ20160334869) to J.D., ANR-10-INBS-0004,France-BioImaging,Développment d'une infrastructure française distribuée coordonnée(2010), Mines Paris - PSL (École nationale supérieure des mines de Paris), MINC, Nicolas, Développment d'une infrastructure française distribuée coordonnée - - France-BioImaging2010 - ANR-10-INBS-0004 - INBS - VALID, Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
cell division Embryo Nonmammalian Cell division [SDV]Life Sciences [q-bio] Cell [SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] Spindle Apparatus Biology intracellular scaling Microtubules Article General Biochemistry Genetics and Molecular Biology 03 medical and health sciences spindle assembly 0302 clinical medicine in silico models Microtubule Live cell imaging [SDV.BC.BC] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] medicine Animals Caenorhabditis elegans Caenorhabditis elegans Proteins Molecular Biology ComputingMilieux_MISCELLANEOUS Cell Size Embryonic cleavage Cell Biology biology.organism_classification microtubule dynamics Cell biology Spindle apparatus 030104 developmental biology medicine.anatomical_structure Paracentrotus lividus mitotic spindle Sea Urchins embryonic development Paracentrotus Carrier Proteins 030217 neurology & neurosurgery Intracellular Developmental Biology |
Zdroj: | Developmental Cell Developmental Cell, Elsevier, 2018, 45 (4), pp.496-511.e6. ⟨10.1016/j.devcel.2018.04.022⟩ Developmental Cell, 2018, 45 (4), pp.496-511.e6. ⟨10.1016/j.devcel.2018.04.022⟩ |
ISSN: | 1534-5807 |
DOI: | 10.1016/j.devcel.2018.04.022⟩ |
Popis: | International audience; Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume. |
Databáze: | OpenAIRE |
Externí odkaz: |