Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing

Autor: Nicolas Minc, Gaëlle Letort, Laras Pitayu, Julie C. Canman, Benjamin Lacroix, Anne Marie Ladouceur, Marine Stefanutti, Paul S. Maddox, Amy Shaub Maddox, François Nédélec, Julien Dumont, Gilliane Maton, Jérémy Sallé
Přispěvatelé: Letort, Gaëlle [0000-0002-5866-0322], Apollo - University of Cambridge Repository, Institut Jacques Monod (IJM (UMR_7592)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Cancer et génome: Bioinformatique, biostatistiques et épidémiologie d'un système complexe, MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Biology [Chapel Hill, NC, USA], University of North Carolina [Chapel Hill] (UNC), University of North Carolina System (UNC)-University of North Carolina System (UNC), Department of Pathology and Cell Biology [New York, NY, USA], Columbia University Irving Medical Center (CUIMC), European Molecular Biology Laboratory [Heidelberg] (EMBL), B.L. was originally supported by a post-doctoral fellowship from the Fondation pour la Recherche Médicale (FRM ARF20140129055). This work was supported by CNRS and University Paris Diderot and by grants from the Agence Nationale pour la Recherche (ANR-16-CE13-0020-01), the Mairie de Paris (Emergence) and the Fondation pour la Recherche Médicale (FRM DEQ20160334869) to J.D., ANR-10-INBS-0004,France-BioImaging,Développment d'une infrastructure française distribuée coordonnée(2010), Mines Paris - PSL (École nationale supérieure des mines de Paris), MINC, Nicolas, Développment d'une infrastructure française distribuée coordonnée - - France-BioImaging2010 - ANR-10-INBS-0004 - INBS - VALID, Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2018
Předmět:
0301 basic medicine
cell division
Embryo
Nonmammalian

Cell division
[SDV]Life Sciences [q-bio]
Cell
[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]
Spindle Apparatus
Biology
intracellular scaling
Microtubules
Article
General Biochemistry
Genetics and Molecular Biology

03 medical and health sciences
spindle assembly
0302 clinical medicine
in silico models
Microtubule
Live cell imaging
[SDV.BC.BC] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]
medicine
Animals
Caenorhabditis elegans
Caenorhabditis elegans Proteins
Molecular Biology
ComputingMilieux_MISCELLANEOUS
Cell Size
Embryonic cleavage
Cell Biology
biology.organism_classification
microtubule dynamics
Cell biology
Spindle apparatus
030104 developmental biology
medicine.anatomical_structure
Paracentrotus lividus
mitotic spindle
Sea Urchins
embryonic development
Paracentrotus
Carrier Proteins
030217 neurology & neurosurgery
Intracellular
Developmental Biology
Zdroj: Developmental Cell
Developmental Cell, Elsevier, 2018, 45 (4), pp.496-511.e6. ⟨10.1016/j.devcel.2018.04.022⟩
Developmental Cell, 2018, 45 (4), pp.496-511.e6. ⟨10.1016/j.devcel.2018.04.022⟩
ISSN: 1534-5807
DOI: 10.1016/j.devcel.2018.04.022⟩
Popis: International audience; Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume.
Databáze: OpenAIRE